Gluten Intolerance

Pasta Problems.

Biologically active molecules released by digesting bread and pasta can survive digestion and potentially pass through the gut lining, suggests new research. The study, published in the journal of Food Research International, reveals the molecules released when real samples of bread and pasta are digested, providing new information for research into gluten sensitivity.

The research is in vitro (in the lab rather than in humans) and the authors of the study, from the University of Milan, Italy, say that more research is needed to determine what biological effect these molecules have on the body once they pass into the bloodstream.

“Previous lab tests have been done on pure gluten, but for the first time we have simulated digestion using real bread and pasta bought from the supermarket to see if these molecules are produced,” said Dr. Milda Stuknytė, one of the authors of the study. “We show that not only are these molecules produced during digestion, but they can also pass through the gut lining, suggesting that they could indeed have a biological effect.”

The wheat proteins and molecules produced during digestion are involved in causing gluten intolerance and sensitivity, which has led to bread and pasta becoming the focus of many popular diets. An estimated 1% of the population suffers with celiac disease or wheat allergy. Non-celiac gluten sensitivity affects around six times more people than celiac disease, according to the National Foundation of Celiac Awareness, yet relatively little is known about the mechanisms that cause it.

The molecules produced during gluten digestion include exorphins, which have also been found in the spinal fluid of people with schizophrenia and autism, and are thought to worsen the symptoms of these neurological diseases. They are similar to opioid molecules, so it’s possible they could have a drug-like effect on the brain.

Until now there has been no evidence showing that the molecules are produced during digestion of real foods. The new research reveals that two of these molecules called exorphins A5 and C5, are released during digestion of real bread and pasta, and that they can survive digestion and pass through an in vitro model of the intestinal lining.

“We chose to study bread and pasta because they represent such a significant part of our diet, especially in Italy,” said Dr. Stuknytė. “While we know quite a lot about the mechanisms of celiac disease and how it’s connected to gluten, we still know relatively little about non-celiac gluten sensitivity. It’s just as important, and our research provides further insight into the proteins and the derived peptides that could be involved.”

The researchers bought two kinds of sliced bread and four kinds of dried spaghetti to digest, from a commercial market. They cooked the spaghetti according to manufacturers’ guidelines, and then digested each sample using a simulated digestion system in the lab.

The levels of the two molecules following digestion were quite different, with twice as much C5 being produced compared to A5; up to 1 milligram of C5 was produced from the in vitro digestion of a single serving size of pasta..

“We were surprised to find such a high amount of C5 in some of the pasta samples,” said Dr. Stuknytė. “We still don’t know what effect this amount could have, but it’s plausible that it could have a potential opioid effect in humans.”

The researchers now plan to investigate what happens to the molecules as they are transported through the digestive system, from the intestine into the blood.

“Our research is just in vitro at this stage, we have a long way to go in terms of discussing the potential biological effects of these molecules, especially in humans,” said Dr. Stuknytė.

The findings presented in the paper are the result of a collaboration between two research groups at the University of Milan: the first led by Prof. Ivano De Noni in the Department of Food, Environmental and Nutritional Sciences (DeFENS), and the second led by Prof. Anita Ferraretto in the Department of Biomedical Sciences for Health.


Preparation Differences.

Researchers trying to understand wheat-related health problems have found new clues to how the grain’s proteins, including gluten, change when cooked and digested. They report in ACS’ Journal of Agricultural and Food Chemistry that boiling pasta releases some of its potential allergens, while other proteins persist throughout cooking and digestion. Their findings lend new insights that could ultimately help celiac patients and people allergic to wheat.

Gianfranco Mamone and colleagues point out that pasta is one of the most popular foods in Europe and the U.S. Most people can eat it without a problem. But for those with wheat allergies or celiac disease, an autoimmune reaction to gluten, cutting the grain out of their diets is necessary to minimize symptoms. These symptoms can include abdominal pain, diarrhea and — in the long run — damage to the small intestines. Mamone’s team set out to gain a better understanding of what happens to the potentially trouble-making proteins in pasta when it’s cooked and consumed.

In the lab, the researchers cooked store-bought pasta and simulated how the body would digest it. They found that while some gluten proteins persisted throughout the cooking and digestion process, other allergenic non-gluten proteins are lost during boiling as they almost completely leak into the cooking water. This suggests that for people with particular types of wheat allergies unrelated to celiac disease, eating pasta might cause a weaker reaction than wheat products that are baked, the researchers say. Their findings also contribute to understanding the chemistry of gluten digestion.

The authors acknowledge funding from BBSRC and Italian Ministry of Economy and Finance.


Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s