Natural Advances.

In a discovery with implications for future drug design, scientists from the Florida campus of The Scripps Research Institute (TSRI) have shown an unprecedented mechanism for how a natural antibiotic with anti-tumour properties incorporates sulphur into its molecular structure, an essential ingredient of its anti-tumour activity.

This new discovery could open the way to incorporating sulphur into other natural products, potentially advancing new therapies for indications beyond cancer.

The study, which was led by TSRI Professor Ben Shen, was released online and in print by the journal Proceedings of the National Academy of Sciences, USA.

“We found a novel mechanism to incorporate sulphur into natural products, which is unprecedented,” Shen said. “Until our study, we didn’t really know how sulphur atoms are incorporated into a natural product, now we have discovered a new family of enzymes and have a workable mechanism to account for sulphur incorporation into a larger class of natural products, known as polyketides, that include many drugs such as erythromycin (antibacterial) and lovastatin (cholesterol lowering).”

Sulphur is critical not only to human life, but to plants and bacteria as well, and is one of the most abundant elements in the human body by weight. A number of compounds that contain sulphur have proven useful in the treatment of conditions ranging from acne and eczema to arthritis and cancer.

The new study is focused on leinamycin (LNM), a sulphur-containing antitumour antibiotic produced by species of the soil-dwelling bacterium Streptomyces. The Shen laboratory has been studying the potential of this natural compound for development of anticancer drugs. They recently reported the discovery of LNM E1, an engineered analogue of LNM, as a “prodrug,” a medication converted through a metabolic process in the body to become an active therapy (see “Scripps Florida Scientists Show Antitumour Agent Can Be Activated by Natural Response to Cell Stress”).

“With LNM, sulphur plays the critical role in its anticancer activity,” Shen said. “With many other natural products, sulphur could add other therapeutic properties. This is the beauty of fundamental research, it lays the foundation to create novel technologies that enable innovative translational research with implications far beyond the original discovery.”

The study links a family of enzymes, molecules that act as biological catalysts known as polyketide synthases (PKS), directly to a complex series of chemical reactions that ultimately add sulphur to leinamycin, a member of the polyketide family of natural products.

“The sulphur incorporation mechanism discovered in our study revealed the novel function of a polyketide synthase, greatly expanding our understanding of its chemistry,” said Ming Ma, one of the co-first authors of the study and a member of the Shen lab. “Since polyketide synthases are a large family of enzymes that have been proven amenable for polyketide structural diversity and drug discovery, it is particularly exciting that this new discovery now provides the possibilities of adding sulphur atoms to compounds similar to leinamycin or other polyketide natural products.”

Because few sulphur-containing natural products are known, this particular enzyme and its gene could now be useful tools to probe ecological niches for the discovery of other sulphur-containing natural products.



Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s